

plug & play instruments oscilloscopes Cleverscope Ltd Phone +64 9 524 7456 Fax +64 9 524 7457 Email support@cleverscope.com 28 Ranfurly Rd, Epsom P.O. Box 26-527 Auckland 1003 New Zealand

V1.3 9 Oct 07

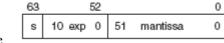
Cscope Driver vi Description

Summary

The Cscope Driver vi is used by Labview programs to communicate with the Cleverscope CS328 acquisition unit.

Cscope control driver.vi

This is the main user vi. Parameters are:


Command

Unsigned 16 bit value.

Values are:

- 0 Inititialize. Call this once to initialise the acquisition system
- 1 Acquire. Call to acquire data as defined by the Acquire Definition and other parameters.
- 2 **Replay**. Call this to re-decimate the capture buffer, and return new samples, based on the SamplesIn Replay, ReplayStartTime and ReplayStopTime values.
- 3 Wait for samples. Call this check for if all the samples have been received. The Value GotSamples is set true when all the samples have been received.
- 4 Update acquisition unit with capturing samples. Can be used to update the signal generator values for example.
- 5 Finish. Call this to close down the acquisition system

ReplayStartTime

Double.

This value specifies, in seconds, the start time of the samples to be returned in the decimated replay from the sample buffer. If the start time is outside the actual available buffer start and stop times (relative to the trigger), the start time will be clipped to either the beginning or end of the buffer, as necessary.

ReplayStopTime

This value specifies, in seconds, the stop time (inclusive) of the samples to be returned in the decimated replay from the sample buffer. If the start time is outside the actual available buffer start and stop times (relative to the trigger), the start time will be clipped to either the beginning or end of the buffer, as necessary.

SamplesInReplay

Signed 32 bit number.

This value specifies the number of samples that will be returned in the decimated replay from the sample buffer. Values may vary from 0 to 4000000.

GotSamples

Boolean Returns false if samples are not yet all received. True = received the values.

Т0

Returned Value – pointer at double. Returns the start time of the waveform being replayed relative to the trigger, which is time 0, in seconds.

dt

Returned Value – pointer at double. Returns the interval between successive samples, in seconds.

NumSamples

Returned Value – pointer at U32. Returns the number of samples in the sample array.

NumFrames

Returned Value – pointer at U32.

Returns the number of frames that the sample array is segmented into – only used when returning all the frames in a sequential capture in one transfer. As an example, assuming 2000 samples per frame, and 100 frames sequentially captured, one data array of 200,000 samples will be returned, being composed of 100 segments of 2000 samples.

ChanA

Returns the Channel A waveform as reals.

ChanB

Returns the Channel B waveform as reals.

Digital Inputs

Returns the digital inputs waveform

Error In

Defines any input errors. If there is an error, the unit will not acquire (but will close).

Error Out

Defines any errors generated while acquiring a signal.

AcquireDefinition

Acquire Mode stop	Item	Description	Data Type
Acquisition mode 7 Sampled	Acquire Mode	How to acquire: 0 = Single, 1= automatic, 2 = triggered, 3 = stop	U16
Acquirer	Acquisition Mode	Method of acquisistion: 0 = sampled, 1= Peak captured, 2 = Filtered, 3= Repetitive, 4= Waveform avg	U16
Transfer Chans Chan A+B		If Waveform avg, make sure there are at least waveform avg +1 buffers.	
A max scale 🕤 5.00	Acquirer	Sets the acquirer to use. Always use 4 = cleverscope	U16
A min scale 🗧 -5.00	Transfer Chans	Always set to 2 = transfer all channels.	U16
	A max scale	Maximum A channel scale value.	Double
B max scale 5.00	A Min scale	Minimum A channel scale value – make lower than max	Double
B min scale -5.00	B max scale	Maximum B channel scale value.	Double
B min scale J -5.00	B min scale	Minimum B channel scale value – make lower than max	Double
A Probe $\frac{7}{7}$ x1	A probe	A Probe Multiplier 0 = x1, 1 = x 10, 2 = x100, 3 = x1000	U16
×	B probe	A Probe Multiplier 0 = x1, 1 = x 10, 2 = x100, 3 = x1000	U16
B Probe 🖒 x1	A Coupling	A Coupling, 0 = AC, 1= DC	U16
A Coupling + DC	B Coupling	B Coupling, 0 = AC, 1= DC	U16
A Coupling The	A Bandwidth	A Bandwidth, 0 = 25MHz, 1 = 100 MHz	U16
B Coupling $\frac{7}{7}$ DC	B Bandwidth	B Bandwidth, 0 = 25MHz, 1 = 100 MHz	U16
A Bandwidth 🐇 100 MHz	Trigger Source	Sets trigger source. 0 = A chan, 1 = B chan, 2 = Ext Trigger, 3 = Dig Input, 4 = Rear Input	U16
B Bandwidth 7 100 MHz	Trigger Amplitude	Level at which to trigger	Double
Trigger Source	A Trigger Amplitude	Not used in driver.	Double
Trigger Amplitude 🖒 0.0	B Trigger Amplitude	Not used in driver.	Double
A Trigger Amplitude	Trigger Filter	Sets filter on trigger. 0 = None, 1 = Low Pass, 2 = Hi Pass, 3 = noise (2 divisions of hysteresis)	U16
B Trigger Amplitude (7) 0.0	Trig Slope	Sets the trigger slope. 0 = rising, 1 = falling	U8
	Trigger Holdoff	Not used in driver.	Double
Trigger Filter	Dig Pattern Rqd	Sets if the digital pattern qualifies the analog trigger. 0 = not required. 1= required.	U8
Trig Slope 🦨	Dig Pattern	Sets the digital pattern for digital input triggering.	U32
		Byte 0 = Select mask, 1= input is used.	
Trigger Holdoff		Byte 1 = Pattern required before trigger	
Dig Pattern Rqd 🔘		Byte 2 = Pattern required to trigger	
Dia Dattaria Alla		Byte 3 not used.	
Dig Pattern	End Tria	Bit 0 is input 1 Bit 7 is input 8	Devilia
Ext Trig Threshold 🕎 0.00	Ext Trig Threshold	Sets the amplitude of the external trigger input, -6+18V	Double
Dig Input Threshold 🕺 0.00	Dig Inp Threshold	Sets the amplitude of the digital input threshold, 0 10V	Double
Start Time 7 -3.00m	Start Time	Sets the start time relative to the trigger, at which acquisition will begin. If positive delayed triggering is used.	Double
Stop Time 7 3.00m	Stop Time	Sets the stop time relative to the trigger. Range is –22 + 22 seconds. Resolution is 10 ns.	Double
Pre Trig Time 👘 3.000m	Pre Trig Time	Not used in driver.	Double
Port 7 Port 1	Port	Not used in driver.	U16
Port Port I	Num divisions	Set to 10.	I16
Num divisions 7	Num seq frames	Sets the number of frames captured sequentially. If not waveform avg method of capture set to 1. If waveform avg capture, set to	116
Num seq frames 7		the number of averages used, 4,16,64,128. If capturing sequential frames, set to number of frames to capture.	
Num Buffers $\frac{r}{\tau}$ 0	Num Buffers	Sets the number of buffers allocated for frame capture. Must be at least num waveform averages + 1.	132

	Sig Gen Freq	Set the signal generator frequency in Hz. Range is 0.00310e6	Double
Sig Gen Freq 🔶 1000.00		Hz.	
Sig Gen Amp $\left(\frac{r}{r}\right)$ 1.00	Sig Gen Amp	Amplitude of signal generator output. Range is 08V	Double
Secon Officer Allo on	Sig Gen Offset	Offset of signal generator output. Range is –5+5V	Double
Sig Gen Offset	Sig Gen Waveform	Sets the signal generator waveform. 0 = sine, 1= triangle, 2 = square, 3 = DC, 4 = 0V.	U16
Sig Gen Waveform sine	Sig Gen Sweep	Not used in driver	U16
Sig Gen Sweep 7 Log	Sig Gen Func	0 means normal sig gen use, 1 means step the sig gen upwards by Sig Gen Freq Step automatically following a trigger.	U16
Sig Gen Func $\frac{7}{7}$ Standard	Sig Gen Freq 2	Not used in driver.	Double
	Sig Gen Phase	Not used in driver.	Double
Sig Gen Freq 2 1000.00 Sig Gen Phase 7 180.00	Trig 2 Function	Sets the use of Trigger 2. 0 = Not used, $1 = T1-2 < min$, $2 = min <= T1-2 <= max$, $T1-2 > max$, $3 = Count T1$, $4 = Wait$ for T1, then count T2.	U16
Trig 2 Function None		$T1 \sim 2$ = time duration from trigger 1 to trigger 2.	
Min Trigger Period 10n	Min Trigger Period	Sets the min period. 022 secs, resolution is 10 ns.	Double
Max trigger Period 100u	Max Trigger Period	Sets the max period. 022 secs, resolution is 10 ns.	Double
Trigger count	Trigger Count	Sets the number of counts for counting. 04,294,967,295	U32
1	Trig 2 slope	Sets the slope for trigger 2. 0 = rising, 1 = falling	U8
Trig 2 Slope	Trig 2 Source han	Sets the trigger 2 source channel. 0 = A chan, 1 = B chan, 2 = Ext Trigger, 3 = Dig Input, 4 = Rear Input	U16
	Trig 2 Level	Sets the trigger 2 threshold level.	Double
Trig 2 Source Chan	Dig Pattern 2 Rqd	Sets if Trigger 2 is qualified by the pattern.	U8
Trig 2 Level	Dig Pattern 2	Defines the trigger 2 digital pattern.	U32
Dig Pattern 2 Rqd 🔘	Trigger 2 Source	Defines the trigger 2 source – 0 = Trigger 1 inverted, 1= Use the Trigger 2 definition	U16
Dig Pattern 2 (1) Trigger 2 Source	Waveform Averages	Sets how many waveforms to average if acquisition mode = waveform avg. Values are 0 = 4, 1 = 16, 2 = 64, 3 = 128.	132
$\frac{1}{\tau} \frac{1}{\text{Trigger 1 inverted}}$ Waveform Averages $\frac{1}{\tau}$ 0	Transfer Size	Use 0 to transfer one frame. Use 6 to transfer all the frames in a sequential capture as one array. See num frames value in next section.	U16
Transfer Size	Value Changed	Change this value to cause the driver to check for changes in all the values in this data structure. If not changed, data structure values will not update.	132
Value changed $\begin{pmatrix} r \\ \tau \end{pmatrix} 0$	Freq Span	Not used in driver	Double
×	Freq Res	Not used in driver	Double
Freq Span 🕣 0	Duration	Not used in driver	Double
Freq Res 🗍 0	Resolution	Not used in driver	Double
	Units are linked	0 means not linked, 1 means linked, and Link port is active	U8
Duration 🗧 0	Ext Sample Clock	0 means use internal 100 MHz sample clock. 1 means use external sample clock. Clock must be a sine or square wave,	U8
Resolution 🗍 0 Units are linked 🔘		with 45-55% duty cycle, amplitude $0.3V - 3V p-p$, biased to 0V or CMOS logic levels. The external clock range currently supported is $10 - 49$ MHz.	
Ext Sample Clock 🔘	Sampler Resolution	Sets the sampler resolution to be used, 0 = 10 bits, 1 = 12 bits, 2 = 14 bits. Will clip to maximum resolution available.	U16
Sampler Resolution	Sig Gen Freq Step	Frequency increment used when acquisition unit automatically steps the signal generator frequency following a trigger, if Sig gen Func = 1.	Double
Sig Gen Freq Step 🗧 0.00		с 	

Using the vi

To use the vi carry out the following steps:

- 1. Call the vi with the **Inititialize** (0) command.
- 2. Setup the Acquire Definition, and call using the Acquire (1) command.
- 3. Using a timed loop that allows operating system access (a timer is a common way to do this) call using the **Wait** for samples (3) command until GotSamples = 1. The data will now be in the data array. The underlying background system only updates GotSamples every 20 msecs, so there is no need to make the call more often than once every 20msecs. The data is available only when got_samples is true.
- 4. If you want to replay another portion of the acquired data, use the **Replay** (2) command followed by **Wait for samples** (3) to check for the samples being transported. Use a timed wait, with at least 20msec between calls as in 4).
- 5. If you want to update the acquisition unit, without making an acquisition, use the **Update** (4) command. You can control the signal generator this way.
- 6. Finally Finish by calling the **Finish** (5) command.

Examples

Examples that perform the functions of a simple oscilloscope, and a band pass response estimator are provided.